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@ Every time we can measure only two of them.

@ We can do the three experiments (together) as much as we
want.
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Quantum contextuality(cont.)

So we get the following probability tables:

(a,b) (b.c) (a.c)
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We always have

POO+P01 — 500+501 ’ P00+P10 — q00+q01 , q00+q10 — SOO+510

The tables do not always come from a global probability table:

(a,b,c)

In this case the tables called contextual tables.
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Topological description
(FENEY)
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Or using commutative diagrams:

{0,717} — D(Z2 x )

doudl D(do)uD(dl)

{a,b,c} —2— D(Z,)



Simplicial distributions

A simplicial set X is a collection of sets Xp, X1, Xo,... with a face
and degeneracy maps. In X, we have the n-simplices.



Simplicial distributions

A simplicial set X is a collection of sets Xp, X1, Xo,... with a face
and degeneracy maps. In X, we have the n-simplices.

The simplicial set Az,




Simplicial distributions

A simplicial set X is a collection of sets Xp, X1, Xo,... with a face
and degeneracy maps. In X, we have the n-simplices.

The simplicial set Az,

Definition: A simplicial distribution is a simplicial map
p: X — D(Agz,)

X is the measurement space and Ay, is the outcome space.
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Az as a path space of the nerve of Z,

Fact: As a topological space, Az, is the set of paths in NZ, that
start at some fixed point. We have a map « : Az, — NZp, send
the path to it's terminal point.

A simplicial map ¢ : X — NZ, is said to be null-homotopic if
there is a simplicial map ¢ : X — Az, such that the following
diagram commutes



Detecting strong contextuality using homotopy

Proposition:

Given a simplicial distribution p : X — D(Agz,). If there is a
subspace Z C X and a simplicial map ¢ : Z — NZ, which is not
null-homotopic, such that

Zc X 2 D(Ay)
x lD(n)
NZn—— D(NZy)

NZn

then p: X — D(Agy,) is strongly contextual.
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Ay, is the nerve of
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Simplicial distribution as a category

The composition that we need:

1)

//////?//\?/T ///

If the measurement space X is 1-skeletal (directed graph), we can
think about a simplicial distribution p: X — D(Ay,) as a
category. We denote this category by C(X, p).

Proposition

A simplicial distribution p : X — D(Az,) is strongly contextual if
and only if there is a € Xy and A € C(X, p)(a, a) such that A is
the unique strongly contextual as a simplicial distribution on the
one edge circle.




The homotopical characterization

Using the Proposition above, we get the following result:
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Thank you for listening



